Cách tìm giá trị lớn nhất (GTLN) và giá trị nhỏ nhất (GTNN) của biểu thức

Bài viết này sẽ chia sẻ với các em một số cách tìm giá trị lớn nhất (GTLN, Max) và giá trị nhỏ nhất (GTNN, Min) của biểu thức (biểu thức đại số chứa dấu căn, chứa dấu giá trị tuyệt đối,…) qua một số bài tập minh họa cụ thể.

° Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức đại số:

* Phương pháp: (đối với biểu thức 1 biến số)

– Muốn tìm giá trị lớn nhất hay giá trị nhỏ nhất của một biểu thức ta có thể biến đổi biểu thức thành dạng: A2(x) + const ;(A biểu thức theo x, const = hằng số).

* Ví dụ 1: Cho biểu thức: A = x2 + 2x – 3. Tìm GTNN của A.

° Lời giải:

– Ta có: A = x2 + 2x – 3 = x2 + 2x + 1 – 1 – 3 = (x + 1)2 – 4

– Vì (x + 1)2 ≥ 0 ⇒ (x + 1)2 – 4 ≥ -4 

 ⇒ A ≥ – 4 dấu bằng xảy ra, tức A = – 4 ⇔ x + 1 = 0 ⇔ x = -1

– Kết luận: Amin = -4 khi và chỉ khi x = -1.

* Ví dụ 2: Cho biểu thức: A = -x2 + 6x – 5. Tìm GTLN của A.

° Lời giải:

– Ta có: A =  -x2 + 6x – 5 = -x2 + 6x – 9 + 9 – 5 = -(x – 3)2 + 4 = 4 – (x – 3)2

– Vì (x – 3)2 ≥ 0 ⇒ -(x – 3)2 ≤ 0 ⇒ 4 – (x – 3)2 ≤ 4

 ⇒ A  ≤ 4 dấu bằng xảy ra, tức A = 4 ⇔ x – 3 = 0 ⇔ x = 3

– Kết luận: Amax = 4 khi và chỉ khi x = 3.

* Ví dụ 3: Cho biểu thức: 

– Tìm x để Amax; tính Amax =?

° Lời giải:

– Để A đạt gía trị lớn nhất thì biểu thức (x2 + 2x + 5) đạt giá trị nhỏ nhất.

– Ta có: x2 + 2x + 5 = x2 + 2x + 1 + 4 = (x + 1)2 + 4

– Vì (x + 1)2 ≥ 0 nên (x + 1)2 + 4 ≥ 4 

 dấu “=” xảy ra khi và chỉ khi x + 1 = 0 ⇔ x = -1

 Vậy

 

Hay học hỏi dn1

° Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức chứa dấu căn:

* Phương pháp: (đối với biểu thức 1 biến số)

– Cũng tương tự như cách tìm ở phương pháp trên, vận dụng tính chất của biểu thức không âm như:

  hoặc 

– Dấu “=” xảy ra khi A = 0.

* Ví dụ 1: Tìm GTNN của biểu thức: 

° Lời giải:

– Ta thấy:  

 

 Vì (x – 1)2 ≥ 0 ⇒ 2(x – 1)2 ≥ 0 ⇒ 2(x – 1)2 + 3 ≥ 3

 nên  dấu “=” xảy ra khi x – 1 = 0 ⇔ x = 1

* Ví dụ 2: Tìm GTLN của biểu thức: 

° Lời giải:

– Ta có: 

 

 Vì (x – 1)2 ≥ 0 ⇒ -3(x – 1)2 ≤ 0 ⇒ -3(x – 1)2 + 5 ≤ 5

 nên  dấu “=” xảy ra khi x – 1 = 0 ⇔ x = 1

 

* Ví dụ 3: Tìm GTLN của biểu thức: 

° Lời giải:

– Ta có:

 

 

 

  nên giá trị nhỏ nhất của B là  đạt được khi:

 

* Ví dụ 4: Tìm GTLN của biểu thức:

° Lời giải:

– Điều kiện: x≥0

– Để A đạt giá trị lớn nhất thì  đạt giá trị nhỏ nhất

– Ta có: 

 

 Lại có: 

 Dấu”=” xảy ra khi 

– Kết luận: GTLN của A = 4/7 khi x = 1/4.

° Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối:

* Phương pháp: (đối với biểu thức 1 biến số)

– Bài toán này cũng chủ yếu dựa vào tính không âm của trị tuyệt đối.

* Ví dụ 1: Tìm GTLN của biểu thức: 

° Lời giải:

– Ta có: |2x – 2| ≥ 0 ⇔ -|2x – 2| ≤ 0 ⇔ 5 -|2x – 2| ≤ 5

 Dấu “=” xảy ra khi |2x – 2| = 0 ⇔ 2x – 2 = 0 ⇔ x = 1

 Vậy Amax = 5 ⇔ x = 1

* Ví dụ 2: Tìm GTNN của biểu thức: A = |9 – x| – 3

° Lời giải:

– Ta có: |9 – x| ≥ 0 ⇔ |9 – x| ≥ 0 ⇔ |9 – x| – 3 ≥ -3

Dấu “=” xảy ra khi |9 – x| = 0 ⇔ 9 – x = 0 ⇔ x = 9

 Vậy Amin = -3 ⇔ x = 9

Như vậy, các bài toán trên dựa trên các biến đổi về dạng tổng hoặc hiệu của biểu thức không âm (bình phương, trị tuyệt đối,…) và hằng số để tìm ra lời giải. Thực tế, còn nhiều bài toán phải sử dụng bất đẳng thức Cauchy (Cosi) cho hai số a, b không âm:  (Dấu “=” xảy ra khi a =b) hay áp dụng bất đẳng thức chứa dấu giá trị tuyệt đối:  (dấu “=” xảy ra khi và chỉ khi a.b≥ 0); , (dấu “=” xảy ra khi và chỉ khi a.b≤ 0).

* Ví dụ 1: Tìm giá trị nhỏ nhất của biểu thức: 

° Lời giải:

–  Vì a,b>0 nên 

– Áp dụng bất đẳng thức Cauchy (còn gọi là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân AM-GM (Arithmetic Means – Geometric Means)).

 

 Dấu “=” xảy ra khi 

– Kết luận: Giá trị nhỏ nhất của M = 2 ⇔ a = b.

* Ví dụ 2: Tìm giá trị nhỏ nhất của biểu thức: 

° Lời giải:

–  Vì a > 1 nên a – 1 > 0 ta có:

  [Áp dụng bất đẳng thức Cauchy ta được]

 

Dấu “=” xảy ra khi 

Đối chiếu điều kiện a > 1 nên chỉ nhận a = 2; loại a = 0.

– Kết luận: GTNN của M = 3 ⇔ a = 2.

Hy vọng với bài viết Cách tìm giá trị lớn nhất (GTLN, Max) và giá trị nhỏ nhất (GTNN, Min) của biểu thức ở trên giúp các em hiểu rõ hơn về dạng toán này.

Việc vận dụng vào mỗi bài toán đòi hỏi kỹ năng làm toán của các em, kỹ năng này có được khi các em chịu khó rèn luyện qua nhiều bài tập, chúc các em học tốt.

Xem thêm bài viết thuộc chuyên mục: Học tập

Bài viết hay nhất

Hướng Dẫn Cách Phối Đồ Đi Đà Lạt Cho Nữ Lùn, Đi Đà Lạt Mặc Gì Đẹp
Hướng Dẫn Cách Phối Đồ Đi Đà Lạt Cho Nữ Lùn, Đi Đà Lạt Mặc Gì Đẹp
Hướng Dẫn Cách Nấu Nước Lá Vối Tươi Ngon Nhất, Bí Quyết Pha Nước Lá Vối Tươi Ngon
Hướng Dẫn Cách Nấu Nước Lá Vối Tươi Ngon Nhất, Bí Quyết Pha Nước Lá Vối Tươi Ngon
Trắc nghiệm tiếng anh 11 unit 4: Volunteer work (P1)
Top 20 Cách Phối Đồ Cho Nữ Béo Bụng, Học Ngay 10 Cách Phối Đồ Cho Người Béo Bụng
Top 20 Cách Phối Đồ Cho Nữ Béo Bụng, Học Ngay 10 Cách Phối Đồ Cho Người Béo Bụng
Mách Nàng 13 Cách Phối Đồ Đi Đám Cưới Cho Nữ Mùa Hè, 31 Cách Phối Đồ Đi Đám Cưới Đẹp Siêu Sang Trọng
Mách Nàng 13 Cách Phối Đồ Đi Đám Cưới Cho Nữ Mùa Hè, 31 Cách Phối Đồ Đi Đám Cưới Đẹp Siêu Sang Trọng
Cách Nấu Nước Cốt Dừa Đóng Hộp Đảm Bảo Nhất, Cách Dùng Nước Cốt Dừa Đóng Hộp
Cách Nấu Nước Cốt Dừa Đóng Hộp Đảm Bảo Nhất, Cách Dùng Nước Cốt Dừa Đóng Hộp
Cách Sử Dụng Nồi Nấu Cháo Chậm Trung Quốc, Nồi Kho Cá Hầm Cháo Chậm Đa Năng Yibao 1,5 Lít
Cách Sử Dụng Nồi Nấu Cháo Chậm Trung Quốc, Nồi Kho Cá Hầm Cháo Chậm Đa Năng Yibao 1,5 Lít
Cách Bảo Quản Cùi Bưởi Để Nấu Chè Ăn, Để Bảo Quản Được Lâu Mà Vẫn
Cách Bảo Quản Cùi Bưởi Để Nấu Chè Ăn, Để Bảo Quản Được Lâu Mà Vẫn
Giải Thích Về Đồ Thị Pha Phối Khí Trên Động Cơ, Cấu Tạo Hệ Thống Phối Khí Trên Động Cơ
Giải Thích Về Đồ Thị Pha Phối Khí Trên Động Cơ, Cấu Tạo Hệ Thống Phối Khí Trên Động Cơ
Giải GDQP- AN 11 bài 3: Bảo vệ chủ quyền lãnh thổ và biên giới quốc gia
Top 20+ Cách Phối Đồ Cho Người Lùn Mập Nữ Trở Lên Thon Gọn
Top 20+ Cách Phối Đồ Cho Người Lùn Mập Nữ Trở Lên Thon Gọn
Diện Áo Lông Đa Phong Cách Phối Đồ Với Áo Khoác Lông Ngắn, 3 Tips Mặc Áo Khoác Lông Sang Chảnh Như Sao
Diện Áo Lông Đa Phong Cách Phối Đồ Với Áo Khoác Lông Ngắn, 3 Tips Mặc Áo Khoác Lông Sang Chảnh Như Sao
Hot 6 Cách Phối Đồ Cho Tuổi 17 Tuổi Cực Chất, Cách Phối Đồ Cho Tuổi Teen Siêu Dễ Thương
Hot 6 Cách Phối Đồ Cho Tuổi 17 Tuổi Cực Chất, Cách Phối Đồ Cho Tuổi Teen Siêu Dễ Thương
20 Cách Phối Đồ Nam Đi Chơi Vừa Chất Vừa Trẻ Trung, Gợi Ý Cách Phối Đồ Nam Đẹp Theo Nhiều Phong Cách
20 Cách Phối Đồ Nam Đi Chơi Vừa Chất Vừa Trẻ Trung, Gợi Ý Cách Phối Đồ Nam Đẹp Theo Nhiều Phong Cách
Cách Nấu Canh Củ Hải Phòng, Canh Củ Hải Phòng Chất Chứa Nỗi Nhớ Quê Xa
Cách Nấu Canh Củ Hải Phòng, Canh Củ Hải Phòng Chất Chứa Nỗi Nhớ Quê Xa