Cách giải phương trình trùng phương, phương trình tích

Vậy cách giải phương trình bậc 4 trùng phương (ax4 + bx2 + c = 0) và phương trình tích cụ thể như  thế nào? chúng ta cùng tìm hiểu qua bài viết dưới dây, qua đó vận dụng giải các bài tập để rèn kỹ năng giải toán dạng này.

° Cách giải phương trình đưa về phương trình tích.

* Phương pháp giải:

– Biến đổi phương trình ban đầu (bằng cách đặt nhân tử chung, vận dụng hằng đẳng thức,…) đưa về dạng phương trình tích, sau đó giải các phương trình.

– Tổng quát: A.B = 0 ⇔ A = 0 hoặc B = 0.

* Ví dụ 1: Giải phương trình

a) (x – 3)(x2 – 3x + 2) = 0

b) x3 + 3x2 – 2x – 6 = 0

° Lời giải:

a) (x – 3)(x2 – 3x + 2) = 0

⇔ x – 3 = 0 hoặc x2 – 3x + 2 = 0

+) x – 3 = 0 ⇔ x1 = 3

+) x2 – 3x + 2 = 0 ta thấy: a = 1; b = -3; c = 2 và a + b + c = 0 nên theo Vi-et ta có nghiệm x2 = 1; x3 = c/a = 2.

• Kết luận: Vậy phương trình đã cho có 3 nghiệm là: x1 = 3; x2 = 1; x3 = 2.

b) x3 + 3x2 – 2x – 6 = 0

⇔ x2(x + 3) – 2(x + 3) = 0

⇔ (x + 3)(x2 – 2) = 0

⇔ x + 3 = 0 hoặc x2 – 2 = 0

+) x + 3 = 0 ⇔ x1 = -3

+) x2 – 2 = 0 ⇔  ; 

• Kết luận: Vậy phương trình đã cho có 3 nghiệm là:

hayhochoi

* Ví dụ 2 (Bài 36 trang 56 SGK Toán 9 Tập 2): Giải các phương trình

a) (3x2 – 5x + 1)(x2 – 4) = 0;

b) (2x2 + x – 4)2 – (2x – 1)2 = 0.

° Lời giải:

a) (3x2 – 5x + 1)(x2 – 4) = 0;

⇔ 3x2 – 5x + 1 = 0 hoặc x2 – 4 = 0

+)Giải: 3x2 – 5x + 1 = 0

– Có a = 3; b = -5; c = 1 ⇒ Δ = (-5)2 – 4.3 = 13 > 0

⇒ Phương trình có hai nghiệm: 

+)Giải: x2 – 4 = 0

⇔ (x – 2)(x + 2) = 0

⇔ x = 2 hoặc x = -2.

• Kết luận: Vậy phương trình đã cho có 4 nghiệm là:

 ; x3 = 2; x4 = -2

– Hay tập nghiệm của phương trình là: 

b) (2x2 + x – 4)2 – (2x – 1)2 = 0

⇔ (2x2 + x – 4 – 2x + 1)(2x2 + x – 4 + 2x – 1) = 0

⇔ (2x2 – x – 3)(2x2 + 3x – 5) = 0

⇔ 2x2 – x – 3 = 0 hoặc 2x2 + 3x – 5 = 0

+) Giải: 2x2 – x – 3 = 0

– Có a = 2; b = -1; c = -3 và thấy a – b + c = 0

⇒ Phương trình có hai nghiệm x = -1 và x = -c/a = 3/2.

+) Giải: 2x2 + 3x – 5 = 0

– Có a = 2; b = 3; c = -5 và thấy a + b + c = 0

⇒ Phương trình có hai nghiệm x = 1 và x = c/a = -5/2.

• Kết luận: Vậy phương trình đã cho có 4 nghiệm là: x1 = -1; x2 =  3/2; x3 = 1; x4 = -5/2.

– Hay tập nghiệm của phương trình là: 

° Cách giải phương trình trùng phương ax4 +bx2 + c = 0 (a≠0).

* Phương pháp giải 1: Đặt ẩn phụ cho pt: ax4 + bx2 + c = 0 (a≠0) (1)

• Đặt t = x2 (t≥0), khi đó ta được phương trình at2 + bt + c = 0 (2)

– Nếu phương trình (2) có 2 nghiệm dương thì phương trình trùng phương có 4 nghiệm.

– Nếu phương trình (2) có một nghiệm dương, một nghiệm âm hoặc có nghiệm kép dương thì phương trình trùng phương có 2 nghiệm.

– Nếu phương trình (2) có 2 nghiệm âm hoặc vô nghiệm thì phương trình trùng phương vô nghiệm.

• Cụ thể như sau:

– Phương trình (1) có 4 nghiệm phân biệt ⇔ Phương trình (2) có hai nghiệm dương phân biệt

– Phương trình (1) có 3 nghiệm phân biệt ⇔ Phương trình (2) có một nghiệm dương và một nghiệm bằng 0

– Phương trình (1) có 2 nghiệm phân biệt ⇔ phương trình (2) có một một nghiệm kép dương hoặc 2 nghiệm trái dấu ⇔ hoặc  ⇔  hoặc 

– Phương trình (1) có 1 nghiệm ⇔ phương trình (2) có một nghiệm kép bằng 0 hoặc có một nghiệm bằng không và nghiệm còn lại âm  hoặc 

– Phương trình (1) vô nghiệm ⇔ phương trình (2) vô nghiệm hoặc có hai nghiệm âm  hoặc 

– Nếu phương trình có 4 nghiệm thì tổng các nghiệm luôn bằng 0 và tích các nghiệm luôn bằng c/a.

* Phương pháp giải 2: Giải trực tiếp phương trình trùng phương bằng cách đưa về giải phương trình tích.

– Biến đổi đưa về dạng pt tích: A.B = 0 ⇔ A = 0 hoặc B = 0.

* Ví dụ 1(Bài 34 trang 56 SGK Toán 9 Tập 2): Giải các phương trình trùng phương:

a) x4 – 5x2 + 4 = 0

b) 2x4 – 3x2 – 2 = 0

c) 3x4 + 10x2 + 3 = 0

° Lời giải:

a) x4 – 5x2 + 4 = 0  (1)

– Đặt t = x2, điều kiện t ≥ 0.

– Khi đó (1) trở thành : t2 – 5t + 4 = 0 (2)

– Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm t1 = 1; t2 = c/a = 4

– Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x2 = 4 ⇒ x = 2 hoặc x = -2.

– Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

b) 2x4 – 3x2 – 2 = 0; (1)

– Đặt t = x2, điều kiện t ≥ 0.

– Khi đó (1) trở thành : 2t2 – 3t – 2 = 0 (2)

– Giải (2) : Có a = 2 ; b = -3 ; c = -2 ⇒ Δ = (-3)2 – 4.2.(-2) = 25 > 0

⇒ Phương trình có hai nghiệm:  

– Đối chiếu điều kiện t≥0 ta thấy chỉ có giá trị t1 = 2 thỏa mãn điều kiện.

+ Với t = 2 ⇒ x2 = 2 ⇒ x = √2 hoặc x = -√2;

– Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.

c) 3x4 + 10x2 + 3 = 0 (1)

– Đặt t = x2 , điều kiện t ≥ 0.

– Khi đó (1) trở thành : 3t2 + 10t + 3 = 0 (2)

– Giải (2): Có a = 3; b’ = 5; c = 3 ⇒ Δ’ = 52 – 3.3 = 16 > 0

⇒ Phương trình có hai nghiệm phân biệt:

  

– Đối chiếu điều kiện t≥0 ta thấy cả 2 giá trị t1 = -1/3 <0 và t2 = -3<0 đều không thỏa điều kiện. Vậy phương trình (1) vô nghiệm.

* Ví dụ 2(Bài 37 trang 56 SGK Toán 9 Tập 2): Giải các phương trình trùng phương

a) 9x4 – 10x2 + 1 = 0 

b) 5x4 + 2x2 – 16 = 10 – x2

c) 0,3x4 + 1,8x2 + 1,5 = 0

d) 

° Lời giải:

a) 9x4 – 10x2 + 1 = 0 (1)

– Đặt t = x2, điều kiện t ≥ 0.

– Khi đó (1) trở thành : 9t2 – 10t + 1 = 0 (2)

+) Giải (2): Có a = 9 ; b = -10 ; c = 1; ta thấy a + b + c = 0

⇒ Phương trình (2) có nghiệm t1 = 1; t2 = c/a = 1/9.

– Cả hai nghiệm đều thỏa mãn điều kiện t≥0.

+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1.

+ Với t = 1/9 ⇒ x2 = 1/9 ⇒ x = 1/3 hoặc x = -1/3. 

• Kết luận: Vậy phương trình (1) có tập nghiệm 

b) 5x4 + 2x2 – 16 = 10 – x2

⇔ 5x4 + 2x2 – 16 – 10 + x2 = 0

⇔ 5x4 + 3x2 – 26 = 0 (1)

– Đặt t = x2 , điều kiện t ≥ 0.

– Khi đó (1) trở thành : 5t2 + 3t – 26 = 0 (2)

+ Giải (2): Có a = 5 ; b = 3 ; c = -26 ⇒ Δ = 32 – 4.5.(-26) = 529 > 0

⇒ Phương trình có hai nghiệm phân biệt:

 

– Đối chiếu điều kiện chỉ có t1 thỏa điều kiện, nên:

+ Với t = 2 ⇒ x2 = 2 ⇒ x = √2 hoặc x = -√2.

⇒ Kết luận: Vậy phương trình (1) có tập nghiệm S = {-√2; √2}.

c) 0,3x4 + 1,8x2 + 1,5 = 0 (1)

– Đặt t = x2, điều kiện t ≥ 0.

– Khi đó, (1) trở thành : 0,3t2 + 1,8t + 1,5 = 0 (2)

+ Giải (2) : có a = 0,3 ; b = 1,8 ; c = 1,5; ta thấy a – b + c = 0

⇒ Phương trình có hai nghiệm t1 = -1 và t2 = -c/a = -5.

– Đối chiếu với điều kiện t ≥ 0 thấy cả hai nghiệm đều không thỏa.

⇒ Vậy phương trình (1) vô nghiệm.

d)  (*)

– Điều kiện xác định: x ≠ 0.

– Quy đồng, khử mẫu ta được:

(*) ⇔ 2x4 + x2 = 1 – 4x2

 ⇔ 2x4 + x2 + 4x2 – 1 = 0

 ⇔ 2x4 + 5x2 – 1 = 0 (1)

– Đặt t = x2, điều kiện t > 0 (do x ≠ 0).

– Khi đó (1) trở thành : 2t2 + 5t – 1 = 0 (2)

+ Giải (2): Có a = 2 ; b = 5 ; c = -1 ⇒ Δ = 52 – 4.2.(-1) = 33 > 0

⇒ Phương trình có hai nghiệm phân biệt:

  

– Đối chiếu với điều kiện t >0 thấy có nghiệm t1 thỏa mãn, nên:

+ Với 

• Kết luận: Vậy phương trình có tập nghiệm

° Một số Bài tập về phương trình tích, phương trình trùng phương

* Bài 1: Giải các phương trình sau

a) x4 – 22x2 – 8x +77 = 0

b) x4 – 6x3 + 8x2 + 2x – 1 = 0

c) x4 + 2x3 – 5x2 + 6x – 3 = 0

Xem thêm bài viết thuộc chuyên mục: Toán học

Bài viết hay nhất

Trắc nghiệm tiếng anh 11 unit 4: Volunteer work (P1)
Cách Bảo Quản Cùi Bưởi Để Nấu Chè Ăn, Để Bảo Quản Được Lâu Mà Vẫn
Cách Bảo Quản Cùi Bưởi Để Nấu Chè Ăn, Để Bảo Quản Được Lâu Mà Vẫn
Trắc nghiệm lịch sử 11 bài 6: Chiến tranh thế giới thứ nhất (1914 – 1918) (P1)
Giải GDQP- AN 11 bài 3: Bảo vệ chủ quyền lãnh thổ và biên giới quốc gia
Giải GDQP- AN 10 bài 2: Lịch sử, truyền thống của Quân đội và Công an nhân dân Việt Nam
Giải Thích Về Đồ Thị Pha Phối Khí Trên Động Cơ, Cấu Tạo Hệ Thống Phối Khí Trên Động Cơ
Giải Thích Về Đồ Thị Pha Phối Khí Trên Động Cơ, Cấu Tạo Hệ Thống Phối Khí Trên Động Cơ
Cách Nấu Nước Cốt Dừa Đóng Hộp Đảm Bảo Nhất, Cách Dùng Nước Cốt Dừa Đóng Hộp
Cách Nấu Nước Cốt Dừa Đóng Hộp Đảm Bảo Nhất, Cách Dùng Nước Cốt Dừa Đóng Hộp
Trắc nghiệm sinh học 11 bài 8: Quang hợp ở thực vật
Diện Áo Lông Đa Phong Cách Phối Đồ Với Áo Khoác Lông Ngắn, 3 Tips Mặc Áo Khoác Lông Sang Chảnh Như Sao
Diện Áo Lông Đa Phong Cách Phối Đồ Với Áo Khoác Lông Ngắn, 3 Tips Mặc Áo Khoác Lông Sang Chảnh Như Sao
Trắc nghiệm công dân 9 bài 3: Dân chủ và kỉ luật
Top 12 Cách Phối Đồ Với Áo Măng Tô Ngắn, 8 Cách Phối Đồ Với Măng Tô Nam Nữ
Top 12 Cách Phối Đồ Với Áo Măng Tô Ngắn, 8 Cách Phối Đồ Với Măng Tô Nam Nữ
Cách Phối Đồ Đi Đám Cưới Cho Nữ Mùa Đông Đẹp, Cách Chọn Trang Phục Mặc Đi Đám Cưới Mùa Đông
Cách Phối Đồ Đi Đám Cưới Cho Nữ Mùa Đông Đẹp, Cách Chọn Trang Phục Mặc Đi Đám Cưới Mùa Đông
Cách Sử Dụng Nồi Nấu Cháo Chậm Trung Quốc, Nồi Kho Cá Hầm Cháo Chậm Đa Năng Yibao 1,5 Lít
Cách Sử Dụng Nồi Nấu Cháo Chậm Trung Quốc, Nồi Kho Cá Hầm Cháo Chậm Đa Năng Yibao 1,5 Lít
Cách Phối Đồ Với Quần Jean Ống Suông Mùa Đông Cực Đẹp Và Khí Chất
Cách Phối Đồ Với Quần Jean Ống Suông Mùa Đông Cực Đẹp Và Khí Chất
Cách Nấu Chè Trôi Nước Bằng Bột Năng Ngon Độc Đáo, Cách Nấu Chè Trôi Nước Ngon Dẻo Mềm Không Bị Cứng
Cách Nấu Chè Trôi Nước Bằng Bột Năng Ngon Độc Đáo, Cách Nấu Chè Trôi Nước Ngon Dẻo Mềm Không Bị Cứng