Các dạng toán bất phương trình mũ, bất phương trình logarit cách giải và bài tập

Vậy bất phương trình mũ và bất phương trình logarit có những dạng toán nào? cách giải các dạng bất phương trình này ra sao? chúng ta cùng đi hệ thống lại các dạng bài tập về bất phương trình mũ và logarit thường gặp và cách giải. Qua đó rèn luyện kỹ năng giải toán bất phương trình qua một số bài tập vận dụng.

I. Các dạng toán bất phương trình Mũ

° Dạng 1: Bất phương trình mũ có dạng af(x) ≤ ag(x)

* Phương pháp giải:

– Để giải bất phương trình mũ dạng này ta sử dụng phép biến đổi tương đương như sau:

   hoặc 

* Ví dụ 1: Giải bất phương trình mũ sau: 

* Lời giải:

– Ta có:

 

 Vậy tập nghiệp của bất phương trình là: [-1;1]

* Ví dụ 2: Giải bất phương trình mũ sau: 

* Lời giải:

– Ta có thể biến đổi theo 1 trong 2 cách sau (thực tế thì cùng phương pháp):

+ Cách 1: Bất phương trình được biến đổi về dạng:

  

 

 Vậy tập nghiệm của bất phương trình là: 

+ Cách 2: Bất phương trình được biến đổi về dạng:

 Vậy tập nghiệm của bất phương trình là: 

> Nhận xét: Trong hai cách biến đổi ở trên ta cùng một mục đích là đưa phương trình đã có về dạng có cùng cơ số.

– Trong cách 1: với việc sử dụng cơ số a<1 nên dấu bất đẳng thức phải đổi chiều, vì vậy mà các em cần chú ý vì nhiều bạn hay sai ở phép biến đổi này.

– Trong cách 2: Với việc sử dụng cơ số a>1 nên dấu bất đẳng thức không đổi chiều, vì vậy các em có thể sử dụng cách 2 này để tránh sai sót ở các bài toán tương tự.

hayhochoi vn dn11

* Ví dụ 2: Giải bất phương trình mũ sau: 

* Lời giải:

– Ta có thể biến đổi theo 1 trong 2 cách sau:

+ Cách 1:

– Ta thấy: 

 

– Do đó, bất phương trình được biến đổi như sau:

 

 

 

 Vậy tập nghiệm của bất phương trình là (-3;-1)

+ Cách 2:

– Ta thấy:  mà  

nên suy ra: 

– Do đó, bất phương trình được biến đổi như sau:

 

 

 

 

 Vậy tập nghiệm của bất phương trình là (-3;-1)

> Nhận xét: Trong hai cách biến đổi ở trên ta cùng một mục đích là đưa phương trình đã có về dạng có cùng cơ số.

– Trong cách 1: Với việc biến đổi đưa vế phải về cùng cơ số với vế trái, khi đó, cơ số a<1 nên dấu bất đẳng thức phải đổi chiều, vì vậy mà các em cần chú ý vì nhiều bạn hay sai ở phép biến đổi này.

– Trong cách 2: Với việc biến đổi đưa vế trái và vế phải về cùng 1 cơ số trung gian (có cơ số a>1) nên dấu bất đẳng thức không đổi chiều, vì vậy các em có thể sử dụng cách 2 này để tránh sai sót ở các bài toán tương tự.

° Dạng 2: Bất phương trình mũ có dạng af(x) < b (b>0).

* Phương pháp giải:

– Để giải bất phương trình mũ dạng này ta sử dụng phép biến đổi tương đương như sau:

 

* Ví dụ 1: Giải bất phương trình mũ sau: 

* Lời giải:

– Ta có: 

 

 

 Vậy tập nghiệm của bất phương trình là: (-∞;1) ∪ (2;+∞)

* Ví dụ 2: Giải bất phương trình mũ sau: 

* Lời giải:

– Bất phương trình biến đổi về dạng sau:

 

 

 Vậy tập nghiệm của phương trình là: 

° Dạng 3: Bất phương trình mũ có dạng af(x) > b.

* Phương pháp giải:

– Để giải bất phương trình mũ dạng này ta sử dụng phép biến đổi tương đương như sau:

 hoặc 

* Ví dụ: Giải bất phương trình mũ sau: 

* Lời giải:

– Ta đưa về cùng cơ số (nên để cơ số lớn hơn 1 như nhận xét ở trên):

 

 

 

Vậy tập nghiệm của bất phương trình là: [1/2;1]

II. Các dạng toán bất phương trình Logarit

° Dạng 1: Bất phương trình logarit có dạng logaf(x) ≤ logag(x)

* Phương pháp giải:

– Để giải bất phương trình logarit dạng logaf(x) ≤ logag(x) ta thực các phép biến đổi như sau:

  

* Ví dụ 1: Giải bất phương trình logarit sau: 

* Lời giải:

– Điều kiện: 3x – 5 > 0 và x + 1 > 0 suy ra x > 5/3

– Để ý cơ số nhỏ hơn 1 nên:

  

 

 Kết hợp điều điện, tậy tập nghiệm của bất phương trình là: (5/3;3)

* Ví dụ 2: Giải bất phương trình logarit sau: 

* Lời giải:

– Ta có thể thực hiện biến đổi theo 1 trong 2 cách sau:

+ Cách 1: Điều kiện x2 – 1>0 và x – 1> 0 ⇔ x > 1.

– Biến đổi bất phương trình logarit về dạng:

 log3(x2 – 1) < 1 + log3(x – 1) ⇔ log3(x2 – 1) < log33(x – 1)

 ⇔ x2 – 1 < 3(x – 1) ⇔ x2 – 3x + 2 < 0 ⇔ (x – 1)(x – 2) < 0 ⇔ 1 < x < 2.

 Kết hợp với điều kiện x > 1 ta nhận được tập nghiệm của BPT là: (1;2)

+ Cách 2: Bất phương trình biến đổi tương đương về dạng:

 log3(x2 – 1) < 1 + log3(x – 1) ⇔ log3(x2 – 1) < log33(x – 1)

 

 

Vậy tập nghiệm của bất phương trình logarit trên là:(1;2)

° Dạng 2: Bất phương trình logarit có dạng logaf(x) < b.

* Phương pháp giải:

– Để giải bất phương trình logarit dạng logaf(x) ≤ b ta thực các phép biến đổi như sau:

 

* Ví dụ: Giải bất phương trình logarit sau: 

* Lời giải:

– Điều kiện: 

– Biến đổi tương đương bất phương trình logarit trên về dạng:

 -log3(x2 – 6x + 18) + 2log3(x – 4)<0 

 ⇔ log3(x – 4)2 < log3(x2 – 6x + 18)

 ⇔ (x – 4)2 < (x2 – 6x + 18)

 ⇔ x2 – 8x + 16 < x2 – 6x + 18

 ⇔ 2x > – 2 ⇔ x > -1.

 Kết hợp với điều kiện x > 4 ta được tập nghiệp của bất phương trình logarit là: x>4. 

° Dạng 3: Bất phương trình logarit có dạng logaf(x) > b.

* Phương pháp giải:

– Để giải bất phương trình logarit dạng logaf(x) > b ta thực các phép biến đổi như sau:

 

* Ví dụ: Giải bất phương trình logarit sau: 

* Lời giải:

– Điều kiện 4 – 2x > 0 suy ra x <2.

  

 

 

Vậy tập nghiệm của bất phương trình logarit là: (-∞; -30]

III. Giải bất phương trình mũ và bất phương trình logarit bằng phương pháp đặt ẩn phụ

– Các dạng đặt ẩn phụ trong trường hợp này cũng giống như với phương trình mũ và phương
trình logarit.

* Ví dụ: Giải bất phương trình mũ sau:

* Lời giải:

 (*)

– Ta đặt t = 3x (điều kiện t>0), khi đó phương trình (*) biến đổi về dạng:

 

 

Với: 

Vậy bất phương trình có tập nghiệm (log32;+∞).

– Chia 2 vế của bất phương trình cho 2x, ta được:

   (*)

– Mặt khác, ta thấy: 

Nêu nếu đặt 

Khi đó, bất phương trình (*) tương đương: 

  

 

Vậy tập nghiệm của bất phương trình là [-1;1]

– Điều kiện: x>0

– Biến đổi bất phương trình về dạng:  (*)

– Chia 2 vế của (*) cho 32lnx > 0 ta được: 

– Ta đặt  điều kiện t > 0. Bất phương trình được đưa về dạng

  kết hợp điều kiện t>0 ta được

  

 Vậy bất phương trình có tập nghiệm là: [e-2;+∞)

Xem thêm bài viết thuộc chuyên mục: Toán học

Bài viết hay nhất

Trắc nghiệm tiếng anh 11 unit 4: Volunteer work (P1)
Cách Bảo Quản Cùi Bưởi Để Nấu Chè Ăn, Để Bảo Quản Được Lâu Mà Vẫn
Cách Bảo Quản Cùi Bưởi Để Nấu Chè Ăn, Để Bảo Quản Được Lâu Mà Vẫn
Trắc nghiệm lịch sử 11 bài 6: Chiến tranh thế giới thứ nhất (1914 – 1918) (P1)
Giải GDQP- AN 11 bài 3: Bảo vệ chủ quyền lãnh thổ và biên giới quốc gia
Giải GDQP- AN 10 bài 2: Lịch sử, truyền thống của Quân đội và Công an nhân dân Việt Nam
Giải Thích Về Đồ Thị Pha Phối Khí Trên Động Cơ, Cấu Tạo Hệ Thống Phối Khí Trên Động Cơ
Giải Thích Về Đồ Thị Pha Phối Khí Trên Động Cơ, Cấu Tạo Hệ Thống Phối Khí Trên Động Cơ
Cách Nấu Nước Cốt Dừa Đóng Hộp Đảm Bảo Nhất, Cách Dùng Nước Cốt Dừa Đóng Hộp
Cách Nấu Nước Cốt Dừa Đóng Hộp Đảm Bảo Nhất, Cách Dùng Nước Cốt Dừa Đóng Hộp
Trắc nghiệm sinh học 11 bài 8: Quang hợp ở thực vật
Diện Áo Lông Đa Phong Cách Phối Đồ Với Áo Khoác Lông Ngắn, 3 Tips Mặc Áo Khoác Lông Sang Chảnh Như Sao
Diện Áo Lông Đa Phong Cách Phối Đồ Với Áo Khoác Lông Ngắn, 3 Tips Mặc Áo Khoác Lông Sang Chảnh Như Sao
Trắc nghiệm công dân 9 bài 3: Dân chủ và kỉ luật
Top 12 Cách Phối Đồ Với Áo Măng Tô Ngắn, 8 Cách Phối Đồ Với Măng Tô Nam Nữ
Top 12 Cách Phối Đồ Với Áo Măng Tô Ngắn, 8 Cách Phối Đồ Với Măng Tô Nam Nữ
Cách Phối Đồ Đi Đám Cưới Cho Nữ Mùa Đông Đẹp, Cách Chọn Trang Phục Mặc Đi Đám Cưới Mùa Đông
Cách Phối Đồ Đi Đám Cưới Cho Nữ Mùa Đông Đẹp, Cách Chọn Trang Phục Mặc Đi Đám Cưới Mùa Đông
Cách Sử Dụng Nồi Nấu Cháo Chậm Trung Quốc, Nồi Kho Cá Hầm Cháo Chậm Đa Năng Yibao 1,5 Lít
Cách Sử Dụng Nồi Nấu Cháo Chậm Trung Quốc, Nồi Kho Cá Hầm Cháo Chậm Đa Năng Yibao 1,5 Lít
Cách Phối Đồ Với Quần Jean Ống Suông Mùa Đông Cực Đẹp Và Khí Chất
Cách Phối Đồ Với Quần Jean Ống Suông Mùa Đông Cực Đẹp Và Khí Chất
Cách Nấu Chè Trôi Nước Bằng Bột Năng Ngon Độc Đáo, Cách Nấu Chè Trôi Nước Ngon Dẻo Mềm Không Bị Cứng
Cách Nấu Chè Trôi Nước Bằng Bột Năng Ngon Độc Đáo, Cách Nấu Chè Trôi Nước Ngon Dẻo Mềm Không Bị Cứng